در اين بخش مي‌توانيد در مورد کليه مباحث مرتبط با علم و تكنولوژي به بحث بپردازيد
Major

Major



نماد کاربر
پست ها

1885

تشکر کرده: 0 مرتبه
تشکر شده: 7 مرتبه
تاريخ عضويت

پنج شنبه 23 مهر 1388 18:31

آرشيو سپاس: 2891 مرتبه در 1282 پست

انرژی خورشیدی

توسط misam5526 » جمعه 1 آبان 1388 18:20

به انرژی تولید شده توسط نور خورشید، انرژی خورشیدی گویند.

مقدمه

خورشید نه تنها خود منبع عظیم انرژی است، بلکه سرآغاز حیات و منشاء تمام انرژیهای دیگر است. طبق برآوردهای علمی در حدود ۶۰۰۰ میلیون سال از تولد این گوی آتشین می‌گذرد و در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به وزن خورشید که حدود ۳۳۳ هزار برابر وزن زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد.

قطر خورشید ۶۱۰ × ۳۹/۱ کیلومتر است و از گازهایی نظیر هیدروژن (۸/۸۶ درصد) هلیوم (۳ درصد) و ۶۳ عنصر دیگر که مهم‌ترین آنها اکسیژن – کربن – نئون و نیتروژن است تشکیل شده‌است.

میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترو مغناطیسی در فضا منتشر می‌شود.

زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد. بنابراین سهم زمین در دریافت انرژی از خورشید حدود از کل انرژی تابشی آن می‌باشد.


جالب است بدانید که سوختهای فسیلی ذخیره شده در اعماق زمین، انرژیهای باد و آبشار و امواج دریاها و بسیاری موارد دیگر از جمله نتایج همین مقدار انرژی دریافتی زمین از خورشید می‌باشد.



خورشيد براي بيليونها سال انرژي را توليد كرده است . انرژي خورشيدي ، پرتوهاي خورشيد است كه به زمين مي رسد .


انرژي خورشيد به طور مستقيم يا غير مستقيم مي تواند ديگر اشكال انرژي تبديل شود ، همانند گرما و الكتريسيته . موانع اصلي ( مشكلات ، يا انتشار براي فائق آمدن ) انرژي خورشيدي شامل
(1) روشها متغير و متناوب كه آن به سطح مي رسد

(2 ) ناحيه بزرگبراي جمع آوري و ذخيره آن در يك سرعت مفيد مورد نياز است .

انرژي خورشيد براي حرارت آب ، براي استفاده ديناميكي ، حرارت قضايي ساختمانها ، خشك كرده توليدات كشاورزي و توليد انرژي الكتريسيته مورد استفاده قرار مي گيرد .


در سال 1830 شاره شناي انگلين به نام جون هر شل John Herschel يك جعبه جمع آوري خورشيدي را براي پختن غذا در طول يك سفر در افريقا استفاده كرد . هم اكنون مردم تلاش مي كنند انرژي خورشيدي را براي چيزهاي زيادي استفاده كنند .



كاربردهاي الكتريكي فتوو لتايك ها را آزمايش مي كنند يك فرايند كه توسط آن انرژي نور خورشيد به طور مستقيم به الكتريسيته تبديل مي شود . الكتريسيته مي تواند به طور مستقيم از انرژي خورشيد توليد شود و ابزارهاي فتوولتايك استفاده كند يا به طور غير مستقيم از ژنراتورهاي بخار ذخاير حرارتي خورشيدي را براي گرما بخشيدن به يك سيال كاربردي مورد استفاده قرار مي دهند .

انرژي فتو ولتايك


انرژي فتو ولتايك . تبديل نور خورشيد به الكتريسيته از ميان يك سلول فتو ولتاتيك (pvs) مي باشد، كخ بطور معمول يك سلول خورشيدي ناميده مي شود. سلول خورشيدي يك ابزار غير مكانيكي است كه معمولاً از آلياز سيليكون ساخته شده است.

نور خورشيد از فتو نهي ،يا ذرات انرزي خورشيدي ساخته شده استاين فتو نهي مغادير متغير انرژي را شامل مي شود مشابه طول مولد هاي متفاوت اسپكتروم هاي نوري هستند .

وقتي فتو نهي به يك سلول فتو ولتاتيك بر خورد مي كند، ممكن است منعكس شوند ،مستفيم از ميان عبور كنند ،يا جذب شوند. فقط فتو نهي جذب شده انرژي را براي توليد الكتريسيته فراهم مي كنند .وقتي كه نور خورشيد كافي يا انرژي توسط جسم نيمه رسانا جذب شود ،الكترون از اتم هاي جسم جابجا مي شوند.



رفتار خاصي سطح جسم در طول ساختن باعث مي شود سطح جتويي سلولكه براي الكترون هاي آزاد بيشتر پذيرش يابد .بنا براين الكترون ها بطور طبيعي به سطح مهاجرت مي كنند .







زماني كه الكترون ها موقعيت n را ترك مي كنند و سوراخ هايي شكل مي گيرد .تعداد الكترونها زياد است ،هر كدام يك بار منفي را حمل مي كنند و به طرف جلو سطح سلول مي روند ،در نتيجه عدم توازون بار بين سلولهاي جلويي وسطوح عقبي يك پتانسيل ولتاژ .شبيه قطب هاي مثبت ومنفي يك باطري ايجاد مي شود.

وقتي كه دو سطح از ميان يك راه داخلي مرتبط مي شود ،الكتريسيته جريان مي يابد .

سلول فتو ولتاتيك قاعده بلوك ساختمان يك سيستم pv است.

سلولهاي انفرادي مي توانند در اندازه هايي از حدود cm 1 تا cm10 از اين سو به آن سو متغير مي شود .

با اين وجود ،توان 1يا 2 وات توليد مي كند ،كه انرژي كافي براي بيشتر كار بردها نيست.براي اينكه بازده انرژي را افزايش دهيم ،سلولها بطور الكتريكي به داخل هواي بسته يك مدول سخت مرتبط مي شود .

مدولها مي توانند بيشتر براي شكل گيري يك آرايش مرتبط شوند.

اصطلاح آرايش به كل صفحه انرژي اشاره مي كند ،اگر چه آن از يك يا چند هزار مدول ساخته شدهباشد ،آن تعداد مدولها ي مورد نياز مي توانند بهم مرتبط شوند براي اينكه اندازه آرايش مورد نياز (توليد انرژي) را تشكيل دهند.

اجراي يك آرايش فتو ولتاتيك به انرژي خورشيد وابسته است .

شرايط آب وهوايي (همانند ابر ومه )تاثير مهمي روي انرزي خورشيدي دريافت شده توسط يك آرايش pv و در عوض ،اجرايي آن دارد .بيشتر تكنولوژي مدول هاي فتو ولتاتيك در حدود 10 درصد موثر هستند در تبديل انرژيخورشيد با تحقيق بيشتر مرتبط شوند براي اينكه اين كار را به 20 درصدافزايش دهند.



سلولهاي pv كه در سال 1954 توسط تحقيقات تلفني بل bell كشف شد حساسيت يك آب سيليكوني حاضر به خورشيد را به طور خاصي آزمايش كرد .ابتدا در گذشته در دهه 1950،pvs براي تامين انرژي قمر هاي فضا در يك مورد استفاده قرار گرفتند.

موفقيت pvs در فضا كار برد هاي تجاري براي تكنو لوژي pvs توليد كرد .ساده ترين سيستم هاي فتو ولتاتيك انرژي تعدادزيادي از ماشين حساب هاي كوچك وساعتهاي مچي را هر روز استفاده كردند.

بيشتر سيستم هاي پيچيده الكتريسيته را براي پمپاژ آب ،انرژي ابزارهاي ارتباطي ،وحتي فراهم كردن الكتريسيته براي خانه هايمان فراهم مي كنند .

تبديل فتو ولتاتيك به چندين دليل مفيد است .تبديل نور خورشيدبه الكتريسيته مستقيم است ،بنابراين سيستم هاي توليد كننده مكانيكي به حجم زيادي لازم نيستند .خصوصيت مدولي انرژي فتو ولتاتيك اجازه مي دهد به طور سريع آرايش ها در هر اندازه مورد نياز يا اجازه داده شده نصب شوند .

همچنين ،تاثير محيطي يك سيستم فتو ولتاتيك حد اقل است ،آب را براي سيستم نياز ندارد پختن وتوليد محصول فرعي نيست .سلولهاي فتوولتاتيك ،همانند باتريها ،جريان مستقيم (dc)را توليد مي كنند كه به طور عمومي براي براي راههاي كوچكي مورد استفاده است (ابزار الكترونيك).وقتي كه جريان مستقيم از سلولهاي فتوولتاتيك براي كاربردهاي تجاري يا لحيم كردن كار برد هاي الكتريكي استفاده مي شود .

شبكه هاي الكتريكي بايستي به جريان متناوب (AC)براي استفاده تبديل كننده ها تبديل شوند ،ابزارهاي حالت جامد كه جريان مستقيم را به جريان متناوب تبديل مي كنند . به طور تاريخي PVSدر جاهاي دور براي توليد الكتريسيته بكار گرفته شده است .با اين وجود يك بازار براي توليد از PVS را توزيع كنند ممكن است با بي نظميقيمتهاي تبديل و توزيع همزمان با بي نظمي الكتريكي توسعه داده شود .

جايگزين ژنراتو هاي كوچك مقياس عددي در تغذيه كنندهاي الكتريكي مي توانند اقتصاد واعتبار سيستم توزيع را بهبود بخشد.



تاریخچه

شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جامهای بزرگ طلائی صیقل داده شده و اشعه خورشید، آتشدانهای محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد.

ولی مهم‌ترین روایتی که درباره استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته‌است اشعه خورشید را از راه دور روی کشتیهای رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده‌است.

با وجود به آنکه انرژی خورشید و مزایای آن در قرون گذشته به خوبی شناخته شده بود ولی بالا بودن هزینه اولیه چنین سیستمهایی از یک طرف و عرضه نفت و گاز ارزان از طرف دیگر سد راه پیشرفت این سیستمها شده بود تا اینکه افزایش قیمت نفت در سال ۱۹۷۳ باعث شد که کشورهای پیشرفته صنعتی مجبور شدند به مسئله تولد انرژی از راههای دیگر (غیر از استفاده سوختهای فسیلی) توجه جدی‌تری نمایند.



کاربردهای انرژی خورشید

در عصر حاضر از انرژی خورشیدی توسط سیستم‌های مختلف و برای مقاصد متفاوت استفاده و بهره‌گیری می‌شود که عبارت‌اند از:
استفاده از انرژی حرارتی خورشید برای مصارف خانگی، صنعتی و نیروگاهی.
تبدیل مستقیم پرتوهای خورشید به الکتریسیته بوسیله تجهیزاتی به نام فتوولتائیک.



استفاده از انرژی حرارتی خورشید:
این بخش از کاربردهای انرژی خورشید شامل دو گروه نیروگاهی و غیر نیروگاهی می‌باشد.

کاربردهای نیروگاهی

تأسیساتی که با استفاده از آنها انرژی جذب شده حرارتی خورشید به الکتریسیته تبدیل می‌شود نیروگاه حرارتی خورشیدی نامیده می‌شود این تأسیسات بر اساس انواع متمرکز کننده‌های موجود و بر حسب اشکال هندسی متمرکز کننده‌ها به سه دسته تقسیم می‌شوند:
نیروگاههایی که گیرنده آنها آینه‌های سهموی ناودانی هستند
نیروگاه‌هایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه‌های بزرگی به نام هلیوستات به آن منعکس می‌شود. (دریافت کننده مرکزی)
نیروگاه‌هایی که گیرنده آنها بشقابی سهموی (دیش) می‌باشد

قبل از توضیح در خصوص نیروگاه خورشیدی بهتر است شرح مختصری از نحوه کارکرد نیروگاه‌های تولید الکتریسیته داده شود. بهتر است بدانیم در هر نیروگاهی اعم از نیروگاههای آبی، نیروگاههای بخاری و نیروگاههای گازی برای تولید برق از ژنراتورهای الکتریکی استفاده می‌شود که با چرخیدن این ژنراتورها برق تولید می‌شود. این ژنراتورهای الکتریکی انرژی دورانی خود را از دستگاهی بنام توربین تأمین می‌کنند. بدین ترتیب می‌توان گفت که ژنراتورها انرژی جنبشی را به انرژی الکتریکی تبدیل می‌کنند. تأمین کننده انرژی جنبشی ژنراتورها، توربین‌ها هستند توربینها انواع مختلف دارند در نیروگاههای بخاری توربینهایی وجود دارند که بخار با فشار و دمای بسیار بالا وارد آنها شده و موجب به گردش در آمدن پره‌های توربین می‌گردد. در نیروگاه‌های آبی که روی سدها نصب می‌شوند انرژی پتانسیل موجود در آب موجب به گردش در آمدن پره‌های توربین می‌شود.

بدین ترتیب می‌توان گفت در نیروگاههای آبی انرژی پتانسیل آب به انرژی جنبشی و سپس به الکتریکی تبدیل می‌شود، در نیروگاههای حرارتی بر اثر سوختن سوختهای فسیلی مانند مازوت، آب موجود در سیستم بسته نیروگاه داخل دیگ بخار (بویلر) به بخار تبدیل می‌شود و بدین ترتیب انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود در نیروگاههای گازی توربینهایی وجود دارد که بطور مستقیم بر اثر سوختن گاز به حرکت درآمده و ژنراتور را می‌گرداند و انرژی حرارتی به جنبشی و سپس به الکتریکی تبدیل می‌شود. و اما در نیروگاههای حرارتی خورشیدی وظیفه اصلی بخش‌های خورشیدی تولید بخار مورد نیاز برای تغذیه توربینها است یا به عبارت دیگر می‌توان گفت که این نوع نیروگاهها شامل دو قسمت هستند:
سیستم خورشیدی که پرتوهای خورشید را جذب کرده و با استفاده از حرارت جذب شده تولید بخار می‌نماید.

سیستمی موسوم به سیستم سنتی که همانند دیگر نیروگاههای حرارتی بخار تولید شده را توسط توربین و ژنراتور به الکتریسیته تبدیل می‌کند.



نیروگاههای حرارتی خورشید از نوع سهموی خطی

در این نیروگاهها، از منعکس کننده‌هایی که به صورت سهموی خطی می‌باشند جهت تمرکز پرتوهای خورشید در خط کانونی آنها استفاده می‌شود و گیرنده به صورت لوله‌ای در خط کانونی منعکس کننده‌ها قرار دارد. در داخل این لوله روغن مخصوصی در جریان است که بر اثر حرارت پرتوهای خورشید گرم و داغ می‌گردد.

روغن داغ از مبدل حرارتی عبور کرده و آب را به بخار به مدارهای مرسوم در نیروگاههای حرارتی انتقال داده می‌شود تا به کمک توربین بخار و ژنراتور به توان الکتریکی تبدیل گردد.

برای بهره‌گیری بیشتر و افزایش بازدهی لوله دریافت کننده سطح آن را با اکسید فلزی که ضریب بالایی دارد پوشش می‌دهند و همچنین در محیط اطراف آن لوله شیشه‌ای به صورت لفاف پوشیده می‌شود تا از تلفات گرمایی و افت تشعشعی جلوگیری گردد و نیز از لوله دریافت کننده محافظت بعمل آید.

ضمناً بین این دو لوله خلاء بوجود می‌آوردند برای آنکه پرتوهای تابشی خورشید در تمام طول روز به صورت مستقیم به لوله دریافت کننده برسد.

در این نیروگاهها یک سیستم ردیاب خورشید نیز وجود دارد که بوسیله آن آینه‌های شلجمی دائماً خورشید را دنبال می‌کنند و پرتوهای آن را روی لوله دریافت کننده متمرکز می‌نمایند.

تغییرات تابش خورشید در این نیروگاهها توسط منبع ذخیره و گرمکن سوخت فسیلی جبران می‌شوند. در چند کشور نظیر ایالات متحده آمریکا – اسپانیا – مصر – مکزیک – هند و مراکش از نیروگاه‌های سهموی خطی استفاده شده‌است که این نیروگاهها یا در مرحله ساخت و یا در مرحله بهره‌برداری قرار دارند. در ایران نیز تحقیقات و مطالعاتی در زمینه این نیروگاهها انجام شده و پروژه یک نیروگاه تحقیقاتی با ظرفیت ۳۵۰ کیلووات توسط سازمان انرژیهای نو ایران در شیراز در حال انجام می‌باشد و انتظار می‌رود تا پایان سال ۸۳ به بهره‌برداری برسد.

کلیه مراحل مطالعاتی، طراحی و ساخت این نیروگاه‌ به طور کامل توسط مختصصین و مهندسان ایرانی انجام می‌پذیرد.

بدیهی است که با افزایش ظرفیت فنی و علمی که در اثر اجرای پروژه نیروگاه خورشیدی شیراز عابد محققین مجرب ایرانی می‌شود ایران در زمره محدود کشورهای سازنده نیروگاه‌های خورشید از نو ع متمرکز کننده‌های سهموی خطی قرار خواهند گرفت.



نیروگاههای حرارتی از نوع دریافت کننده مرکزی

در این نیروگاه‌ها پرتوهای خورشیدی توسط مزرعه‌ای متشکل از تعداد زیادی آینه منعکس کننده بنام هلیوستات بر روی یک دریافت کننده که در بالای برج نسبتاً بلندی استقرار یافته‌است متمرکز می‌گردد. در نتیجه روی محل تمرکز پرتوها انرژی گرمایی زیادی بدست می‌آید که این انرژی بوسیله سیال عامل که داخل دریافت کننده در حرکت است، جذب می‌شود و بوسیله مبدل حرارتی به سیستم آب و بخار مرسوم در نیروگاه‌های سنتی منتقل شده و بخار فوق گرم در فشار و دمای طراحی شده برای استفاده در توربین ژنراتور تولید می‌گردد.

این سیال عامل در مبدلهای حرارتی در کنار آب قرار گرفته و موجب تبدیل آن به بخار با فشار و حرارت بالا می‌گردد. در برخی از سیستم‌ها سیال عامل آب است و مستقیماً در داخل دریافت کننده به بخار تبدیل می‌شود.

برای استفاده دائمی از این نوع نیروگاه‌ در زمانی که تابش خورشید وجود ندارد مثلاً ساعات ابری یا شبها از سیستم‌های ذخیره کننده حرارت و یا احیاناً از تجهیزات پشتیبانی که ممکن است از سوخت فسیلی استفاده کنند جهت ایجاد بخار برای تولید برق کمک گرفته می‌شود.

مطالعات و تحقیقات در زمینه فناوری و سیستمهای این نیروگاه‌ها ادامه دارد و آزمایشگاهها و مؤسسات متعددی در سراسر دنیا در این زمینه فعالیت می‌کنند.

مطالعات ساخت اولین نیروگاه خورشیدی ایران از نوع دریافت کننده مرکزی توسط سازمان انرژیهای نو ایران و با کمک شرکتهای مشاور و سازنده داخلی با ظرفیت یک مگاوات و سیال عامل آب و بخار در طالقان جریان دارد. کلیه مطالعات اولیه و پتانسیل سنجی و طراحی نیروگاه به انجام رسیده و یک نمونه هلیوستات نیز ساخته شده‌است.


نیروگاه‌های حرارتی از نوع بشقابی:

در این نیروگاهها از منعکس کننده‌هایی که به صورت شلجمی بشقابی می‌باشد جهت تمرکز نقطه‌ای پرتوهای خورشیدی استفاده می‌گردد و گیرنده‌هایی که در کانون شلجمی قرار می‌گیرند به کمک سیال جاری در آن انرژی گرمایی را جذب نموده و به کمک یک ماشین حرارتی و ژنراتور آن را به نوع مکانیکی و الکتریکی تبدیل می‌نماید.


دودکش‌های خورشیدی:

روش دیگر برای تولید الکتریسیته از انرژی خورشید استفاده از برج نیرو یا دودکش‌های خورشیدی می‌باشد در این سیستم از خاصیت دودکش‌ها استفاده می‌شود به این صورت که با استفاده از یک برج بلند به ارتفاع حدود ۲۰۰ متر و تعداد زیادی گرم خانه‌های خورشیدی که در اطراف آن است هوای گرمی که بوسیله انرژی خورشیدی در یک گرمخانه تولید می‌شود و به طرف دودکش یا برج که در مرکز گلخانه‌ها قرار دارد، هدایت می‌شود.

این هوای گرم بعلت ارتفاع زیاد برج با سرعت زیاد صعود کرده و با عث چرخیدن پروانه و ژنراتوری که در پایین برج نصب شده‌است می‌گردد و بوسیله این ژنراتور برق تولید می‌شود هم اکنون یک نمونه از این سیستم در ۱۶۰ کیلومتری جنوب مادرید احداث گردیده که ارتفاع برج آن به ۲۰۰ متر می‌رسد.

مزایای نیروگاههای خورشیدی

نیروگاه‌های خورشیدی که انرژی خورشید را به برق تبدیل می‌کنند امید است در آینده با مزایای قاطعی که در برابر نیروگاه‌های فسیلی و اتمی دارند به خصوص اینکه سازگار با محیط زیست می‌باشند، مشکل برق بخصوص در دوران انجام ذخائر نفت و گاز را حل نمایند. تأسیس و بکارگیری نیروگاه‌های خورشیدی آینده‌ای پر ثمر و زمینه‌ای گسترده را برای کمک به خودکفایی و قطع وابستگی کشور به صادرات نفت فراهم خواهد کرد. اکنون شایسته‌است که به ذکر چند مورد از مزایای این نیروگاه‌ها بپردازیم.



الف) تولید برق بدون مصرف سوخت

نیروگاه‌های خورشیدی نیاز به سوخت ندارند و برخلاف نیروگاه‌های فسیلی که قیمت برق تولیدی آنها تابع قیمت نفت بوده و همیشه در حال تغییر می‌باشد. در نیروگاه‌های خورشیدی این نوسان وجود نداشته و می‌توان بهای برق مصرفی را برای مدت طولانی ثابت نگهداشت.


ب) عدم احتیاج به آب زیاد

نیروگاه‌های خورشیدی بخصوص دودکشهای خورشیدی با هوای گرم احتیاج به آب ندارند لذا برای مناطق خشک مثل ایران بسیار حائز اهمیت می‌باشند. (نیروگاه‌های حرارتی سنتی هنگام فعالیت نیاز به آب مصرفی زیادی دارند).


پ) عدم آلودگی محیط زیست

نیروگاه‌های خورشیدی ضمن تولید برق هیچگونه آلودگی در هوا نداشته و مواد سمّی و مضر تولید نمی‌کنند در صورتی که نیروگاه‌های فسیلی هوا و محیط اطراف خود را با مصرف نفت – گاز و یا ذغال سنگ آلوده کرده و نیروگاه‌های اتمی با تولید زباله‌های هسته‌ای خود که بسیار خطرناک و رادیواکتیو هستند محیط زندگی را آلوده و مشکلات عظیمی را برای ساکنین کره زمین بوجود می‌آورند.

ت) امکان تأمین شبکه‌های کوچک و ناحیه‌ای

نیروگاه‌های خورشیدی می‌توانند با تولید برق به شبکه سراسری برق نیرو برسانند و در عین امکان تأمین شبکه‌های کوچک ناحیه‌ای، احتیاج به تأسیس خطوط فشار قوی طولانی جهت انتقال برق ندارند و نیاز به هزینه زیاد احداث شبکه‌های انتقال نمی‌باشد.


ث) استهلاک کم و عمر زیاد

نیروگاه‌های خورشیدی بدلایل فنی و نداشتن استهلاک زیاد دارای عمر طولانی می‌باشند در حالی که عمر نیروگاه‌های فسیلی بین ۱۵ تا ۳۰ سال محاسبه شده‌است.

ج) عدم احتیاج به متخصص

نیروگاه‌های خورشیدی احتیاج به متخصص عالی ندارند و می‌توان آنها را بطور اتوماتیک بکار انداخت، در صورتی که در نیروگاه‌های اتمی وجود متخصصین در سطح عالی ضروری بوده و این دستگاهها احتیاج به مراقبتهای دائمی و ویژه دارند.

کاربردهای غیر نیروگاهی

کابردهای غیر نیروگاهی از انرژی حرارتی خورشید شامل موارد متعددی می‌باشد که اهم آنها عبارت‌اند از: آبگرمکن و حمام خورشیدی – سرمایش و گرمایش خورشیدی – آب شیرین کن خورشیدی – خشک کن خورشیدی – اجاق خورشیدی – کوره‌های خورشیدی و خانه‌های خورشیدی.

الف – آبگرمکن‌های خورشیدی و حمام خورشیدی

تولید آب گرم مصرفی ساختمانها اقتصادی‌ترین روشهای استفاده از انرژی خورشیدی است می‌توان از انرژی حرارتی خورشید جهت تهیه آب گرم بهداشتی در منازل و اماکن عمومی به خصوص در مکانهایی که مشکل سوخت رسانی وجود دارد استفاده کرد. چنانچه ظرفیت این سیستمها افزایش یابد می‌توان از آنها در حمامهای خورشیدی نیز استفاده نمود. تاکنون با توجه به موقعیت جغرافیایی ایران تعداد زیادی آب گرمکن خورشیدی و چندین دستگاه حمام خورشیدی در نقاط مختلف کشور از جمله استان‌های خراسان – سیستان و بلوچستان و یزد نصب و راه اندازی شده‌است.

ب – گرمایش و سرمایش ساختمان و تهویه مطبوع خورشیدی

[[اولین خانه خورشیدی در سال ۱۹۳۹ساخته شد که در آن از مخزن گرمای فصلی برای بکارگیری گرمای آن در طول سال استفاده شده است.]] گرمایش و سرمایش ساختمانها با استفاده از انرژی خورشید، ایده تازه‌ای بود که در سالهای ۱۹۳۰ مطرح شد و در کمتر از یک دهه به پیشرفتهای قابل توجهی رسید. با افزودن سیستمی معروف به سیستم تبرید جذبی به سیستم‌های خورشیدی می‌توان علاوه بر آب گرم مصرفی و گرمایش از این سیستم‌ها در فصول گرما برای سرمایش ساختمان نیز استفاده کرد.

پ – آب شیرین کن خورشیدی

هنگامی که حرارت دریافت شده از خورشید با درجه حرارت کم روی آب شور اثر کند تنها آب تبخیر شده و املاح باقی می‌ماند.

سپس با استفاده از روشهای مختلف می‌توان آب تبخیر شده را تنظیم کرده و به این ترتیب آب شیرین تهیه کرد. با این روش می‌توان آب بهداشتی مورد نیاز در نقاطی که دسترسی به آب شیرین ندارند مانند جزایر را تأمین کرد.

آب شیرین خورشیدی در دو اندازه خانگی و صنعتی ساخته می‌شوند. در نوع صنعتی با حجم بالا می‌توان برای استفاده شهرها آب شیرین تولید کرد.

ت – خشک کن خورشیدی

خشک کردن مواد غذایی برای نگهداری آنها از زمانهای بسیار قدیم مرسوم بوده و انسان‌های نخستین خشک کردن را یک هنر می‌دانستند.

خشک کردن عبارت است از گرفتن قسمتی از آب موجود در مواد غذایی و سایر محصولات که باعث افزایش عمر انباری محصول و جلوگیری از رشد باکتریها می‌باشد. در خشک کن‌های خورشیدی بطور مستقیم و یا غیر مستقیم از انرژی خورشیدی جهت خشک نمودن مواد استفاده می‌شود و هوا نیز به صورت طبیعی یا اجباری جریان یافته و باعث تسریع عمل خشک شدن محصول می‌گردد. خشک کن‌های خورشیدی در اندازه‌ها و طرحهای مختلف و برای محصولات و مصارف گوناگون طراحی و ساخته می‌شوند.

ث – اجاقهای خورشیدی

دستگاههای خوراک پز خورشیدی اولین بار بوسیله شخصی بنام نیکلاس ساخته شد. اجاق او شامل یک جعبه عایق بندی شده با صفحه سیاهرنگی بود که قطعات شیشه‌ای درپوش آنرا تشکیل می‌داد اشعه خورشید با عبور از میان این شیشه‌ها وارد جعبه شده و بوسیله سطح سیاه جذب می‌شد سپس درجه حرارت داخل جعبه را به ۸۸ درجه افزایش می‌داد. اصول کار اجاق خورشیدی جمع آوری پرتوهای مستقیم خورشید در یک نقطه کانونی و افزایش دما در آن نقطه می‌باشد. امروزه طرحهای متنوعی از این سیستم‌ها وجود دارد که این طرحها در مکانهای مختلفی از جمله آفریقای جنوبی آزمایش شده و به نتایج خوبی نیز رسیده‌اند. استفاده از این اجاقها به ویژه در مناطق شرقی کشور ایران که با مشکل کمبود سوخت مواجه می‌باشند بسیار مفید خواهد بود.

ج – کوره خورشیدی

در قرن هجدهم نوتورا اولین کوره خورشیدی را در فرانسه ساخت و بوسیله آن یک تل چوبی را در فاصله ۶۰ متری آتش زد.

بسمر پدر فولاد جهان نیز حرارت مورد نیاز کوره خود را از انرژی خورشیدی تأمین می‌کرد. متداولترین سیستم یک کوره خورشیدی متشکل از دو آینه یکی تخت و دیگری کروی می‌باشد. نور خورشید به آینه تخت رسیده و توسط این آینه به آینه کروی بازتابیده می‌شود. طبق قوانین اپتیک هر گاه دسته پرتوی موازی محور آینه با آن برخورد نماید در محل کانون متمرکز می‌شوند به این ترتیب انرژی حرارتی گسترده خورشید در یک نقطه جمع می‌شود که این نقطه به دماهای بالایی می‌رسد. امروزه پروژه‌های متعددی در زمینه کوره‌های خورشید در سراسر جهان در حال طراحی و اجراء می‌باشد.

چ – خانه‌های خورشیدی

ایرانیان باستان از انرژی خورشیدی برای کاهش مصرف چوب در گرم کردن خانه‌های خود در زمستان استفاده می‌کردند. آنان ساختمانها را به ترتیبی بنا می‌کردند که در زمستان نور خورشید به داخل اتاقهای نشیمن می‌تابید ولی در روزهای گرم تابستان فضای اتاق در سایه قرار داشت. در اغلب فرهنگ‌های دیگر دنیا نیز می‌توان نمونه‌هایی از این قبیل طرحها را مشاهده نمود. در سالهای بین دو جنگ جهانی در اروپا و ایالات متحده طرحهای فراوانی در زمینه خانه‌های خورشیدی مطرح و آزمایش شد. از آن زمان به بعد تحول خاصی در این زمینه صورت نگرفت. حدود چند سالی است که معماران بطور جدی ساخت خانه‌های خورشیدی را آغاز کرده‌اند و به دنبال تحول و پیشرفت این تکنولوژی به نتایج مفیدی نیز دست یافته‌اند مثلاً در ایالات متحده در سال ۱۸۹۰ به تنهایی حدود ۱۰ تا ۲۰ هزار خانه خورشیدی ساخته شده‌است. در این گونه خانه‌ها سعی می‌شود از انرژی خورشید برای روشنایی – تهیه آب گرم بهداشتی – سرمایش و گرمایش ساختمان استفاده شود و با بکار بردن مصالح ساختمانی مفید از اتلاف گرما و انرژی جلوگیری شود.

در ایران نیز پروژه ساخت اولین ساختمان خورشیدی واقع در ضلع شمالی دانشگاه علم و صنعت و به منظور مطالعه و پژوهش در خصوص بهینه سازی مصرف انرژی و امکان بررسی روشهای استفاده از انواع انرژیهای تجدیدپذیر به ویژه انرژی خورشیدی اجرا گردیده‌است.

Hesam - 1994 از این پست سپاسگزاري کرده است

کاربران زیر از شما کاربر محترم جناب misam5526 تشکر کرده اند:
Mahdi1944, HORLIKAN

Major

Major



نماد کاربر
پست ها

1885

تشکر کرده: 0 مرتبه
تشکر شده: 7 مرتبه
تاريخ عضويت

پنج شنبه 23 مهر 1388 18:31

آرشيو سپاس: 2891 مرتبه در 1282 پست

Re: انرژی خورشیدی

توسط misam5526 » جمعه 1 آبان 1388 18:28

سلول خورشید




سلول خورشیدی یا سلول فوتوولتاییک ابزاری است که انرژی خورشیدی را تحت اثر فوتوولتاییک به الکتریسیته مبدل می‌کند. فن‌آوری فوتوولتاییک شاخه‌ای از فن‌آوری است که به کاربرد سلول‌های خورشیدی می‌پردازد. گاهی اصطلاح «سلول خورشیدی» تنها برای ابزارهایی به کار می‌رود که مختص تبدیل انرژی نور خورشید هستند، در حالی که عبارت «سلول فوتوولتاییک» به صورتی عام‌تر به کار می‌رود. سازه‌ای که از کنار هم چیدن سلول‌های خورشیدی به دست می‌آید را واحد خورشیدی گویند که خود این سازه‌ها را می‌توان به هم متصل ساخت تا آرایهٔ فوتوولتاییک به دست آید.

سلول‌های خورشیدی کاربرد بسیاری دارند. سلول‌های تکی برای فراهم کردن توان لازم دستگاه‌های کوچک‌تر مانند ماشین حساب الکترونیکی به کار می‌روند. آرایه‌های فوتوولتاییک الکتریسیتهٔ بازیافت‌شدنی‌ای را تولید می‌کنند که عمدتاً در موارد عدم وجود سیستم انتقال و توزیع الکتریکی کاربرد دارد. برای مثال می‌توان به محل‌های دور از دسترس، ماهواره‌های مدارگرد، کاوش‌گرهای فضایی و ساختمان‌های مخابراتی دور از دسترس اشاره کرد. علاوه بر این استفاده از این نوع انرژی امروزه در محل‌هایی که شبکهٔ توزیع هم موجود است مرسوم شده‌است.

امروزه انسان با پیشرفت‌هایی که در زمینه‌های مختلف کرده، نیازی روز افزون به انرژی پیدا کرده و این امر او را بر آن داشت تا با روشهای گوناگون انرژی مورد نیاز خود را کسب کند. یکی از این روش‌ها که طی ۲۰ سال اخیر، انسان از آن استفاده می‌کند، استفاده از باتری‌های خورشیدی است. خورشید در هر ثانیه حدود ۱۰۰۰ ژول انرژی به هر متر مربع از سطح زمین منتقل می‌کند که با جمع‌آوری کردن آن می‌توان انرژی مورد نیاز برای کارهای مختلفی را تأمین کرد.




ساختار باتری خورشیدی

باتری‌های خورشیدی معمولاً از مواد نیمه‌رسانا، مخصوصاً سیلیسیم، تشکیل شده‌است. هر اتم سیلیسیم با چهار اتم دیگر پیوند تشکیل می‌دهد و بدین صورت، شکل کریستالی آن پدید می‌آید. در باتری‌های خورشیدی به سیلیسیم مقداری جزئی ناخالصی اضافه می‌کنند. اگر اتم ناخالص ۵ ظرفیتی باشد (اتم سیلیسیم ۴ ظرفیتی است) آنگاه در ارتباط با چهار اتم سیلیسیم یک لایهٔ آن بدون پیوند باقی می‌ماند (یک تک الکترون). به همین دلیل چون بار نسبی منفی پیدا می‌کند به آن سیلیسیم نوع N) Negative) می‌گویند. و همین طور اگر اتم ناخالص دارای ظرفیت ۳ باشد آنگاه یک حفرهٔ اضافی ایجاد می‌شود. حفره را به گونه‌ای می‌توان گفت که جای خالی الکترون است، با بار مثبت (به اندازهٔ الکترون) و جرمی برابر با جرم الکترون. که این امر هم باعث مثبت شدن نسبی ماده می‌شود و به آن سیلیسیم نوع P) Positive) می‌گویند . هر باتری خورشیدی از ۶ لایه تشکیل شده که هر لایه را ماده‌ای خاص تشکیل می‌دهد که در شکل مشخص شده‌است.



عملکرد باتری خورشیدی

با اتصال یک نیمه هادی نوع p به یک نیمه هادی نوع n، الکترون‌ها از ناحیه n به ناحیه p و حفره‌ها از ناحیه p به ناحیه n منتقل می‌شوند. با انتقال هر الکترون به ناحیه p، یک یون مثبت در ناحیه n و با انتقال هر حفره به ناحیه n، یک یون منفی در ناحیه p باقی می¬ماند. یون‌های مثبت ومنفی میدان الکتریکی داخلی ایجاد می‌کنند که جهت آن از ناحیه n به ناحیه p است. این میدان با انتقال بیشتر باربرها (الکترون‌ها و حفره‌ها)، قوی تر و قوی تر شده تا جایی که انتقال خالص باربرها به صفر می‌رسد. در این شرایط ترازهای فرمی دو ناحیه با یکدیگر هم سطح شده‌اند و یک میدان الکتریکی داخلی نیز شکل گرفته‌است. اگر در چنین شرایطی، نور خورشید به پیوند بتابد، فوتون‌هایی که انرژی آنها از انرژی شکاف نیمه هادی بیشتر است، زوج الکترون-حفره تولید کرده و زوج‌هایی که در ناحیه تهی یا حوالی آن تولید شده‌اند شانس زیادی دارند که قبل از بازترکیب، توسط میدان داخلی پیوند از هم جدا شوند(). میدان الکتریکی، الکترون‌ها را به ناحیه n و حفره‌ها را به ناحیه p سوق می‌دهد. به این ترتیب تراکم بار منفی در ناحیه n و تراکم بار مثبت در ناحیه p زیاد می‌شود. این تراکم بار، به شکل ولتاژی در دو سر پیوند قابل اندازه گیری است. اگر دو سر پیوند با یک سیم، به یکدیگر اتصال کوتاه شود، الکترون‌های اضافی ناحیه n، از طریق سیم به ناحیه p رفته و جریان اتصال کوتاهی را شکل می‌دهند. اگر به جای سیم از یک مصرف کننده استفاده شود، عبور جریان از مصرف کننده، به آن انرژی می‌دهد. به این ترتیب انرژی فوتون‌های نور خورشید به انرژی الکتریکی تبدیل می‌شود. هر چه میدان الکتریکی درون پیوند قوی تر باشد، ولتاژ مدار باز بزرگتری بدست می‌آید. برای دست یافتن به یک میدان الکتریکی بزرگ، باید اختلاف ترازهای فرمی دو ماده p و n از یکدیگر زیاد باشد. برای این منظور باید انرژی شکاف نیمه هادی بزرگ انتخاب شود. بنابراین ولتاژ مدار باز یک سلول خورشیدی با انرژی شکاف آن افزایش می‌یابد. اما افزایش انرژی شکاف سبب می‌شود، فوتون‌های کمتری توانایی تولید زوج الکترون-حفره داشته باشند و بنابراین جریان اتصال کوتاه کمتری نیز تولید شود. بنابراین افزایش انرژی شکاف، روی ولتاژ مدار باز و جریان اتصال کوتاه سلول دو اثر متفاوت دارد.



فناوری‌های ساخت سلول‌های خورشیدی

در حال حاضر دو فناوری در ساخت سلولهای خورشیدی غالب است: فناوری نسل اول و نسل دوم. فناوری نسل اول بر پایه ویفرهای سیلیکونی با ضخامت ۴۰۰-۳۰۰ میکرومتر است که ساختاری بلوری یا چند بلوری دارند که یا از بریدن شمش بدست میآیند یا از روش EFG و با کمک خاصیت مویینگی رشد داده می‌شوند. تکنولوژی نسل دوم یا تکنولوژی لایه نازک ، براساس لایه نشانی نیمهه هادی روی بسترهای شیشه‌ای، فلزی یا پلیمری، در ضخامت¬های ۵-۳ است[۱]. هزینه مواد اولیه در تکنولوژی نسل دوم، پایین¬تر است و از آن گذشته، اندازه سلول تا ۱۰۰ برابر بزرگتر از اندازه سلول ساخته شده با تکنولوژی نسل اول است که مزیتی برای تولید انبوه آن محسوب می‌شود. در عوض بازدهی سلول‌های نسل اول، که اغلب سلول‌های بازار را تشکیل می‌دهند، به دلیل کیفیت بالاتر مواد، از بازدهی سلول‌های نسل دوم بیشتر است. انتظار می‌رود اختلاف بازدهی میان سلول‌های دو نسل با گذشت زمان کمتر شده و تکنولوژی نسل دوم جایگزین نسل اول شود[۲] در سال 1961، Shockley و Queisser با در نظر گرفتن یک سلول خورشیدی پیوندی به شکل یک جسم سیاه با دمای 300 کلوین نشان دادند که بیشترین بازدهی یک سلول خورشیدی صرف نظر از نوع تکنولوژی بکار رفته در آن، 30% است که در انرژی شکاف eV1.4 یعنی انرژی شکاف گالیم آرسناید بدست می‌آید[۳]. بنابراین بازدهی سلول های خورشید نسل اول و دوم حتی در بهترین حالت نمی‌تواند از حوالی 30% بیشتر شود. این در حالی است که حد کارنو برای تبدیل انرژی خورشیدی به انرژی الکتریکی 95% است[۴]. و این مقدار تقریباً سه برابر بیشتر از بازدهی نهایی سلولهای نسل اول و دوم است. بنابراین دستیابی به سلول هایی با بازدهی هایی دو تا سه برابر بازدهی های کنونی، امکان پذیر است. سلول های خورشیدی که دارای چنین بازدهی هایی باشند، نسل سوم سلول های خورشیدی نامیده می‌شوند. سلول های متوالی ، سلول های خورشیدی چاه کوانتومی ، سلول های خورشیدی نقطه کوانتومی ، سلول های حامل داغ ، نسل سوم سلول های خورشیدی را تشکیل می‌دهن



ساخت سلول‌های خورشیدی با استفاده از مواد آلی

سلولهای خورشیدی ساخته شده از مواد آلی در مقایسه با همتایان سیلیکونی خود بازده بسیار کمتری دارند. اما به دلیل هزینه ساخت پایین و همچنین قابلیت هایی مانند انعطاف پذیری برای مصارف غیرصنعتی مناسب هستند. شارژر موبایل قابل حمل٫ کار گذاشتن باطری ها در سطوح دارای انحناء مانند بدنه ماشین ها و حتی استفاده از آنها در لباس ها از مصارفی است که برای سلولهای خورشیدی آلی (ارگانیک) پیش بینی می‌شود. خصوصیت دیگر آنها انعطاف پذیری در طول موجی است که در آن بیشترین جذب را دارند. در نتیجه اگر برای مثال ماده آلی با جذب درناحیه زیر قرمز استفاده شود از سلول خورشیدی آلی می‌توان در شیشه‌های اتومبیل٫ شیشه‌های خانه‌ها و هر مکان دیگری که باید شفاف باشد٫ استفاده کرد. ساخت سلولهای خورشیدی آلی از دهه ۷۰ میلادی مورد تحقیق و بررسی علمی قرار گرفته است ولی هنوز نمونه بازاری آن ساخته نشده است. از موادی که آینده روشنی در این صنعت برای آن پیش بینی می‌شود کریستالهای مایع ستونی هستند.

Hesam - 1994 از این پست سپاسگزاري کرده است

کاربران زیر از شما کاربر محترم جناب misam5526 تشکر کرده اند:
Mahdi1944, HORLIKAN


 


  • موضوعات مشابه
    پاسخ ها
    بازديدها
    آخرين پست

چه کسي حاضر است ؟

کاربران حاضر در اين انجمن: بدون كاربران آنلاين و 5 مهمان